Работаем по всей России
+79613381888
[email protected]
OnlineStudHelp

ЗАПОЛНИ ФОРМУ И УЗНАЙ
ТОЧНУЮ СТОИМОСТЬ РАБОТЫ

Введен недействительный тип данных

Укажите название предмета

Введите ваше имя

Введите номер телефона!

Введен недействительный тип данных

Введите ваш емайл правильно!

Введен недействительный тип данных

Файлы: .doc, .docx, .pdf, .jpg, .png, .zip, .rar
Максимальный размер загружаемого файла: 10M

Сотни довольных клиентов и положительных отзывов за 7 лет работы!
Мы экономим ваши деньги и время, качественно выполняя свою работу!
Помощь оказывают профессионалы своего дела: преподаватели ВУЗов и кандидаты наук!

Лекции по Философии Л027

Л027

 

Введение

Понятие симметрии играет ведущую, хотя и не всегда осоз­нанную, роль в современной науке, искусстве, технике и окру­жающей нас жизни. Она пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты. Дж. Ньюмена особенно удачно подчеркнул всеохватывающие и вездесущие проявления симметрии: «Сим­метрия устанавливает забавное и удивительное сродство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляри­зованным светом, естественным отбором, теорией групп, инва­риантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими собо­рами, снежинками, музыкой, теорией относительности...»

Особое внимание следует заострить на зер­кальной симметрии. Такой подход вполне правомерен. Доста­точно взглянуть на окружающий нас реальный мир, чтобы убе­диться в первостепенном значении именно зеркальной симмет­рии с соответствующим симметричным элементом — плоско­стью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле нее — шагают, плывут, летят, катятся, — обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Все то, что развивается или движется лишь в вертикальном направ­лении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом

Главную роль в теории играет плоскость симметрии. Знаменитый русский кристаллограф Г. В. Вульф (1863—1925) писал (1896) о плоскости симметрии как об «основном элементе симметрии». Комбинируя зеркальные отражения, можно вывести все возможные симметричные опе­рации. Исходя из этих комбинаций, можно полностью вывести все элементы классической симметрии — простые, сложные и винтовые оси, плоскости простого и скользящего отражения, трансляции. Совокупности таких элементов образуют виды симметрии (например, 32 класса для кристаллических многогранников, 230 пространственных групп для кристаллических структур). Как видим, именно плоскость симметрии лежит в основании всего здания симметричной теории

Человек как пример симметричного существа

Абсолютно симметричного человека, скорее всего, не существует. У каждого, разумеется, об­наружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта нахо­дятся на разной высоте, во всяком случае, у большинства людей

Но это лишь мелкие несоответствия. Никто не усом­нится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы

Но, если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так

Всем известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание

Многие художники обращали пристальное внимание на сим­метрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе. Известны каноны про­порций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками еди­ной меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя)

В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С извест­ным допущением можно считать, что длина туловища превос­ходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство вы­соких людей отличаются удлиненным черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлиненной формы

Размеру головы пропорциональна не только длина туло­вища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы в общем похожи друг на друга. Однако наши пропорции согласуются лишь прибли­зительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию

И в одежде человек тоже, как правило, старается поддержи­вать впечатление симметричности: правый рукав соответствует левому, правая штанина — левой

Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния

Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая воло­сы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой)

Полная безукоризненная симметрия выглядела бы нестер­пимо скучно. Именно небольшие отклонения от нее и придают характерные, индивидуальные черты

И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цвет ­ ными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена

Подобие

Нередко мы говорим, что какие-то два человека похожи друг на друга. Дети обычно похожи на своих родителей (во всяком случае, по мнению их бабушек). Похожи, но не одинаковы!

Попробуем разобраться, что понимается под сходством или подобием в математике. У подобных фигур соответствующие отрезки пропорциональны друг другу. В нашем случае мы можем сформулировать это положение так: подобные носы имеют одинаковую форму, но могут отличаться размером. При этом каждому отдельному участку носа (например, переносице) должны быть пропорциональны все остальные

Этот закон подобия иногда таит в себе подвох. Например, в задаче такого рода:

Высота башни А 10 м . На некотором расстоянии Х от нее находится шестиметровая башня В. Если провести прямые от подножия и от вершины башни А через вершину башни В, то они встретятся соответственно с подножием и вершиной башни С, имеющей высоту 15 м . Каково расстояние от башни А до баш­ни Д?

Казалось бы, для решения достаточно взять в руки циркуль и линейку. Но тут же выяснится, что ответов будет бесконечное множество. Иными словами, на вопрос о значении Х не может быть однозначного ответа

Такого рода задачи, даже если они и не имеют решения, как, например, предложенная выше, касаются какой-либо проблемы, лежащей у пределов нашего знания. Большей частью это те самые пределы, перед котор ы ми пасует знаме­нитый «здравый смысл», и лишь строго математическое логи­ческое мышление вкупе с естественнонаучным познанием спо­собно привести к правильному решению

Обратимся снова к человеку: при сравнении живых существ сходство ощущается явно, если совпадают их пропорции. По­этому могут быть похожи дети и взрослые. Хотя масса и раз­меры любой из частей тела, будь то нос или рот, различны, но пропорции похожих индивидов совпадают

Поразительный пример подобия — глазомерная оценка ра с ­стояния с помощью большого пальца. Таким способом военные и моряки прикидывают расстояние между двумя пунктами на мест ности или в море, сопоставляя их с шириной пальца или кулака. В самом простом случае закрывают один глаз и смотрят откры­тым глазом на палец вытянутой руки, используя его как визир

Если раскрыть прежде закрытый глаз (а второй зажмурить), палец на видимое расстояние переместится в сторону. В градус­ном выражении это расстояние составляет 6°. И притом вели­чина этого «прыжка» (в пределах допустимой ошибки) одинакова у всех людей! Так, правофланговый роты, парень двухметро­вого роста, и самый маленький — левофланговый, ростом всего лишь метр шестьдесят, сравнив эти «прыжки» пальца, получат одну и ту же величину

Причина этого явления, в конечном счете, кроется в подобии людей и, конечно, в законах оптики, которым подчиняется наше зрение

Известно и «правило кулака» — в самом прямом смысле этого слова — для грубой прикидки величины угла. Если мы посмотрим одним глазом на кулак вытянутой руки (на сей раз одним и тем же глазом), то ширина кулака составит 10°, а рас­стояние между двумя косточками фаланг 3°. Кулак и оттопы­ренный в сторону большой палец составят 15°. Комбинируя эти мерки, можно приблизительно измерить все углы на местности

И, наконец, еще одна угловая мера нашего тела, которая может пригодиться при домашних работах. Угол между боль­шим пальцем и мизинцем растопыренной ладони составляет 90°

Определение симметрии

В начале реферата человек назвался существом симметрич­ным. В дальнейшем же термин «симметрия» больше не употреб­лялся. Однако во всех случаях, когда отрезки прямой, плоские фигуры или пространственные тела были подобными, но без дополнительных действий сов­местить их было нельзя, «практически» нельзя, мы встречались с явлением симметрии. Эти элементы соответствовали друг другу, как картина и ее зеркальное отражение. Как левая и правая рука. Если мы возьмем на себя труд заглянуть в «Современный словарь иностран­ных слов», то обнаружим, что под симметрией понимается «соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра... такое расположе­ние точек относительно точки (центра симметрии), прямой (оси симметрии) или плоскости (плоскости симметрии), при котором каждые две соответствующие точки, лежащие на одной прямой, проходящей через центр симметрии, на одном перпендикуляре к оси или плоскости симметрии, находятся от них на одинаковом расстоянии...»

И это еще не все, как часто бывает с иностранными словами, значений у слова «симметрия» существует множество. В том-то и состоит преимущество подобных выражений, что их можно использовать в случае, когда не хотят дать однозначное опре­деление или просто не знают четкого различия между двумя предметами

Термин «соразмерный» мы применяем по отношению к человеку, картине или какому-либо предмету, когда мелкие не­соответствия не позволяют употребить слово «симметричный»

Давайте также заглянем в Энциклопедический словарь . Мы обнаружим здесь шесть статей, начинающихся со слова «симметрия». Кроме того, это слово встречается во множестве других статей

В математике слово «симметрия» имеет не меньше семи значений (среди них симметричные полиномы, симметрические матрицы). В логике существуют симметричные отношения. Важ­ную роль играет симметрия в кристаллографии. Интересно интерпретируется понятие симметрии в биологии. Там описывается шесть различ­ных видов симметрии. Мы узнаем, например, что гребневики дисимметричны, а цветки львиного зева отличаются билатеральной симметрией. Мы обнаружим, что симметрия существует в музыке и хореографии (в танце). Она зависит здесь от чередования тактов. Оказывается, многие народные песни и танцы построены симметрично

Основной интерес для нас будет представлять зеркальная сим­метрия — симметрия левого и правого. Можно увидеть, что это кажущееся ограничение уведет нас далеко в мир науки и техники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на сим­метрию)

Зеркальная симметрия

Порассуждаем о зеркальной симметрии. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой сим­метрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллело­грамм, несимметрична. Сначала представляется, что параллель­но одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль

В то время как симметричные фигуры полностью соответ­ствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо

Но то, что здесь выглядит шуткой, в практической жизни доставляет массу сложностей не только детям, но и взрослым. Нередко дети пишут некоторые буквы «навыворот». Латинское N выглядит у них как И, а S и Z получаются наоборот. Если мы внимательно посмотрим на буквы латинского алфавита (а это ведь тоже, в сущности, плоские фигуры!), то увидим среди них симметричные и несимметричные. У таких букв, как N , S , Z , нет ни одной оси симметрии (равно как и у F , G , J , L , Р, О и R ). Но N,S и Z особенно легко пишутся «наоборот», так-так имеют центр симметрии. У остальных прописных букв есть как минимум по одной оси симметрии. Буквы А, М, Т, U , V, W и Y можно разделить пополам продольной осью симметрии. Буквы В, С, D , Е, I, К — попереч­ной осью симметрии. У букв Н, О и Х имеется по две взаимно перпендикулярные оси симметрии. (тот же эксперимент можно провести с любым алфавитом европейской группы)

Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсут­ствует вовсе, становятся «нечитабельными»

Встречаются дети, которые пишут левой рукой, и все буквы получаются у них в зеркальном, отраженном, виде. «Зеркальным шрифтом» написаны дневники Леонардо да Винчи. Вероятно, не существует веского основания, заставляющего нас писать буквы именно так, как это делаем мы. Вряд ли зеркальным шрифтом труднее овладеть, чем обычным

Правописание от этого не стало бы проще, а некоторые слова, как, например, ОТТО, вообще не изменились бы. Сущест­вуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф означает именно истинную середину

В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить откло­нение от нулевого положения, например на руле грузовика или на штурвале корабля

В трехмерном мире пространственных тел, где мы с вами живем, существуют плоскости симметрии. «Зеркало» всегда имеет на одно измерение меньше, чем мир, который оно отражает. При взгляде на круглые тела сразу видно, что они имеют плоскости симметрии, но вот сколько именно — решить не всегда просто

Поставим перед зеркалом шар и начнем его медленно вра­щать: изображение в зеркале никак не будет отличаться от ори­гинала, конечно в том случае, если шар не имеет каких-либо отличительных признаков на своей поверхности. Шарик для пинг-понга обнаруживает бессчетное множество плоскостей симмет­рии. Возьмем нож, отрежем половину шара и поместим ее перед зеркалом. Зеркальное отражение вновь дополнит эту половинку до целого шарика

Но если мы возьмем глобус и рассмотрим его симметрию, учитывая нанесенные на нем географические контуры, то мы не отыщем ни одной плоскости симметрии

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. Поэтому нас не должно удивлять, что в. пространстве аналогичные свойства присущи шару. Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым или полусферическим основанием, шар или сегмент шара. Или возьмем примеры из жизни: сигарета, сигара, стакан, конусообразный фунтик с мороженым, кусочек проволо­ки, труба

Если мы повнимательней присмотримся к этим телам, то заметим, что все они так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бес­численное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна ось симметрии

Отчетливо видна, например, ось у конуса фунтика с мороже­ным. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов сим­метрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру

В целом эти представления вполне приемлемы и по сей день. Далее греческие философы делали вывод о том, что Вселенная, несомненно, должна быть построена по образцу математического идеала. Ясно, что у древних греков еще не было фунтиков с мороженым! Иначе бы такой прозаиче­ский предмет, имеющий бесчисленное множество плоскостей симметрии, мог бы нарушить их стройную систему

Если для сравнения мы рассмотрим куб, то увидим, что он имеет девять плоскостей симметрии. Три из них делят его грани пополам, а шесть проходят через вершины. По сравнению с шаром это, конечно, маловато

А имеются ли тела, занимающие по числу п лос к о с тей проме­жуточное положение между шаром и кубом? Без сомнения — да. Стоит только вспомнить, что круг, в сущности , как бы состоит из многоугольников. Мы проходили это в школе при вычислении числа p . Если над каждым n - угольником мы воздвигнем n - угольную пирамиду, то сможем провести через нее n плоскостей сим­метрии

Можно было бы придумать 32-гранную сигару, которая имела бы соответствующую симметрию!

Но если мы, тем не менее, воспринимаем куб как более симмет­ричный предмет, чем пресловутый фунтик с мороженым, то это связано со строением поверхности. У шара поверхность всего одна. У куба их шесть — по числу граней, и каждая грань пред­ставлена квадратом. Фунтик с мороженым состоит из двух поверхностей: круга и конусообразной оболочки

Более двух тысячелетий (вероятно, благодаря непосредствен­ному восприятию) традиционно отдается предпочтение «сораз­мерным» геометрическим телам. Греческий философ Платон (427—347 до н. э.) открыл, что из правильных конгруэнтных плоских фигур можно построить только пять объемных тел

Из четырех правильных (равносторонних) треугольников по­лучается тетраэдр (четырехгранник). Из восьми правильных тре­угольников можно построить октаэдр (восьмигранник) и, нако­нец, из двадцати правильных треугольников — икосаэдр. И толь­ко из четырех, восьми или двадцат и одинаковых треугольников можно получить объемное геометрическое тело. Из квадратов можно составить только одну объемную фигуру — гексаэдр (шес­тигранник), а из равносторонних пятиугольников — додекаэдр (двенадцатигранник)

А что в нашем трехмерном мире полностью лишено зеркальной симметрии?

Если на плоскости это была плоская спираль, то в нашем мире таковыми, безусловно, будут винтовая лестница или спи­ральный бур. Кроме того, существуют еще тысячи асимметрич­ных вещей и предметов в окружающей нас жизни и технике. Как правило, винт имеет правую резьбу. Но иногда встречается и левая. Так, для большей безопасности баллоны с пропаном снабжены левой резьбой, чтобы к ним нельзя было привинтить вентиль-редуктор, предназначенный, например, для баллона с другим газом

Между шаром и кубом, с одной стороны, и винтовой лест­ н ицей, с другой, существует еще масса степеней симметрии. От куба можно постепенно отнимать плоскости симметрии, оси и центр, пока мы не придем к состоянию полной асимметрии

Почти у конца этого ряда симметрии стоим , мы, люди, с всего единственной плоскостью симметрии, разделяющей наше тело на левую и правую половины. Степень симметрии у нас такая же, как, например, у обычного полевого шпата (минерала, образующего вместе со слюдой и кварцем гнейс или гранит)

Зеркальное отражение

Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно, возникнут трудности. Как правило, мы довольны собой, если что-то представляем себе хотя бы «в принципе». А подробности, которые преподаватели физики объясняли нам на доске с помощью мела и линейки, всякий нормальный школьник и сту­дент стараются забыть, и, чем скорее, тем лучше

Каждый ребенок, исполненный удивления перед окружающим миром, непременно заинтересуется, каким образом зеркало отра­жает его. Но взрослые обычно отвечают в подобных случаях: «Не задавай глупых вопросов!» Человек сникает, начинает стеснять­ся, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!)

Но вспомним о словах Бертольда Бреста: «Глупых вопросов не быва­ет, бывают только глупые ответы»

Конечно, людей можно разделить на дураков и умных, на больших и маленьких, они разнятся по языку, вероисповеданию, мировоззрению. Можно представить себе и такой способ подраз­деления:

1) люди, которые никогда не удивляются;

2) люди, которые удивляются, но не задумываются над удивившим их явлением;

3) люди, которые, удивившись, спрашивают «а почему?»;

4) люди, которые, удивившись, обращаются к числу и мере

В зависимости от условий жизни, традиций, степени образо­ванности встречаются и все возможные «промежуточные» сту­пени. Мыслители античности и средневековья изумлялись миру и думали о его тайнах. Но им лишь изредка выпадал случай измерить какое-либо явление

Только в эпоху Возрождения, то есть в XVI в., люди пришли к убеждению, что измерение лучше слепой веры или схоласти­ческих рассуждений. Этому способствовали экономические инте­ресы, удовлетворить которые можно было только путем разви­тия естественных наук, путем количественных измерений. (Мы видим, что, по существу, меновая стоимость «измерялась» с помощью денег.) Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличитель­ное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль ван Ройен, именовавший себя Снеллиусом (1580 - 1626), наблю­дал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения

Теперь, задним числом, этот закон кажется нам чем-то само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философ­скую мысль вплоть до XIX века

Закон отражения Снеллиуса объясняет явление зеркального отражения

Каждой точке предмета соответствует её отражение в зеркале, и потому в нём наш правый глаз перемещается на левую сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми

От трельяжа до радара

Должны ли мы считать, что самих себя видим только в «зеркальном отражении» и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим «на самом деле»?

Конечно, нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах трельяжи. Они имеют одно большое главное зеркало в центре и два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во вто­ром зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении

Угловое зеркало с прямым углом между составляющими его зеркалами отличается еще некоторыми интересными свойствами. Если смастерить его из двух маленьких зеркал, то можно убедиться в том, что в таком зеркале с прямоугольным раст­вором (а сейчас речь только о нем) отраженный луч света всегда параллелен падающему лучу. Это очень важное свойство. Но не единственное! При повороте углового зеркала вокруг оси, соединяющей зеркала (в определенных пределах), отраженный луч не изменит своего направления

В технике обычно не составляют зеркала, а используют прямоугольную призму, у которой соответствующие грани обеспечивают зеркальный ход лучей

Прямоугольные призмы, как бы «складывающие» ход луча «гармошкой», сохраняя его необходимую длину, заданную фо­кусным расстоянием линзы, позволяют уменьшать габариты оптических приборов. В призматических биноклях лучи света при помощи таких приборов обращаются на 180°

На старинных картинах можно видеть капитанов и полковод­цев с непомерно длинными подзорными трубами. Благодаря угловым зеркалам старинные подзорные трубы превратились в современные бинокли

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» — это борта игрового поля, а роль луча света испол­няют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отра­зившись от нее, движется обратно параллельно направлению пер­вого удара

Свойство отраженного луча сохранять направление при пово­роте углового зеркала вокруг оси находит широкое применение в технике. Так, в трехгранном зеркальном уголковом отражателе луч сохраняет постоянное направление, несмотря на весьма сильные качания зеркала. По форме такое зеркало представляет собой кубик с отрезанным уголком. И в этом случае на практике используют не три зеркала, а соответствующую стеклянную призму с зеркальными гранями

Важной областью применения трехгранного зеркала служит уголковый отражатель (кошачий глаз, катофот) на велосипедах, мотоциклах, сигнальных предохранительных щитах, ограничите­лях проезжей части улицы. С какой бы стороны ни упал свет на такой отражатель, световой рефлекс всегда сохраняет направле­ние источника света

Большую роль трехгранные зеркальные уголковые отражате­ли играют в радиолокационной технике. Самолеты и крупные стальные корабли отражают луч радара. Несмотря на значи­тельное рассеяние его, той небольшой доли отраженных радио­волн, которая возвращается к радару, обычно достаточно для распознания объекта

Хуже обстоит дело с маленькими суденышками, сигнальными поплавками и пластиковыми парусными яхтами. У небольших предметов отражение слишком слабое. Пластиковые яхты так же «прозрачны» для радиоволн, на которых работает радарная техника, как оконные стекла для солнечного света. Поэтому парусные яхты и сигнальные буйки оснащают метал­лическими уголковыми отражателями. Длина граней у такого «зеркала» всего около 30 см , но этого довольно, чтобы возвра­щать достаточно мощное эхо

Вернемся еще раз к угловому зеркалу из двух соединенных зеркал. Качнем его ось вправо или влево — наше изображение тоже наклонится в сторону. Мы можем даже положить его, если поместим ось зеркала горизонтально. Но, наклонив зеркало еще дальше, мы заметим, что изображение «выпрямляется»

Угловое зеркало имеет плоскость симметрии, которая делит пополам пространство между обоими зеркалами. При соответст вующей форме оно может иметь еще одну плоскость, перпенди­кулярную зеркалам, но она здесь не рассматривается. Нас интересует только плоскость симметрии, проходящая между зер­калами, в которой, так сказать, взаимно отражаются оба зеркала

Каждая плоскость симметрии меняет, как нам уже известно, правое на левое (и наоборот). Но это несколько упрощенное вос­приятие. Если бы плоскость симметрии умела говорить, она бы заявила: «Я не меняю ни правое на левое, ни верх на низ. Я во­обще не знаю, что это такое. Я лишь точка за точкой отображаю все, что находится по одну или другую сторону от меня. Если че­ловек своей продольной осью встанет параллельно моей оси, я поменяю ему правую и левую стороны, но если тот же человек своей продольной осью расположится перпендикулярно моей оси (ибо я всегда остаюсь неизменной), то я поменяю то, что люди называют верхом и низом». Как видим, все зависит от точки зрения

Но в конечном итоге истинно то, что можно измерить и со­считать. Сегодня мы не видим особого достижения в том, что Снеллиус измерил углы падения и отражения луча. Но мы не должны забывать, что ученые XVI в. подобными открытиями ломали более чем двадцативековую традицию

Среди секретов телевидения известен трюк с уменьшением исполнителя, который на фоне всей окружающей обстановки «в натуральную величину» выглядит маленькой куколкой. Иног­да зритель может видеть актера одновременно в двух масштабах: на переднем плане в обычную величину, а на заднем в умень­шенном

Тому, кто искушен в фотографии, понятно, как достигается подобный эффект. Сначала снимается уменьшенный вариант, а потом актер играет перед экраном, на который проецируется его уменьшенное изображение

Известный «чародей» Иохен Цмек в своей увлекательной книге «Волшебный мир магии» описывает, как подобные чудеса можно делать без фотографии. Когда уменьшенный предмет должен сам собой появиться в пространстве, с помощью вогну­того зеркала его изображение проецируется таким образом, чтобы он казался стоящим на подставке

Иллюзионист Александр Фюрст строил этот трюк следую­щим образом. Зритель видел маленькую сцену с сильно умень­шенными артистами. Чтобы спроецировать их в таком виде на экран, Фюрст использовал в своем сооружении угловое зеркало. Именно перед ним двигались артисты. Но зеркало переворачи­вало их на 180° и ставило тем самым «на голову», и уже это изображение вогнутое зеркало, еще раз перевернув, отбрасывало на маленькую сцену. Непременным условием эффекта была без­упречная чистота всех зеркал

Легенды рудокопов

В старину рудокопы были людьми сугубо практическими. Они не забивали себе голову названиями всевозможных горных пород, которые встречали в штольне, а просто делили эти породы и минералы на полезные и бесполезные, ненужные. Нужные они извлекали из недр, из них плавили медь, свинец, серебро и другие металлы, а ненужные сваливали в отвалы

Для полезных (на их взгляд) минералов они подыскивали на­глядные и запоминающиеся имена. Можно никогда не видеть копьевидного колчедана, но без особого труда представить его себе по названию. Не сложнее по названию отличить красный железняк от бурого железняка

Для бесполезных камней (как уже было сказано — на их взгляд) горняки нередко находили названия в преданиях и легендах. Так, например, произошло название руды кобальтовый блеск. Кобальтовые руды похожи на серебряные и при добыче иногда принимались за них. Когда из такой руды не удавалось выплавить серебро, считалось, что она заколдована горными ду­хами — кобольдами

Когда же минералогия превратилась в науку, было открыто великое множество пород и минералов. И при этом все чаще воз­никали трудности с изобретением для них наименований. Новые минералы часто называли по месту находки (ильменит — в Ильменских горах) или в честь знаменитого человека (гетит — в честь Гете) или же давали ему греческое или латинское название

Музеи пополнялись грандиозными коллекциями камней, кото­рые становились уже необозримыми. Не слишком помогали и химические анализы, потому что многие вещества одного и того же состава образуют подчас кристаллы совершенно различного облика. Достаточно вспомнить хотя бы снежинки

В 1850 г . французский физик Опост Браве (1811—1863) выдви­нул геометрический принцип классификации кристаллов, основан­ный на их внутреннем строении. По мнению Браве, мельчайший, бесконечно повторяющийся мотив узора и есть определяющий, решающий признак для классификации кристаллических веществ. Браве представлял себе в основе кристаллического вещества кро­шечную элементарную частицу кристалла. Сегодня со школьной скамьи мы знаем, что мир состоит из мельчайших частиц — ато­мов и молекул. Но Браве оперировал в своих представлениях кро­шечным «кирпичиком» кристалла и исследовал, каковы могли быть у него углы между ребрами и в каких соотношениях его стороны могли находиться между собой

В кубе три ребра расположены всегда под углом 90° друг к Другу. Все стороны имеют равную длину. У кирпича углы тоже составляют 90°. Но его стороны различной длины. У снежинок, наоборот, мы не найдем угла 90°, а только 60 или 120°

Браве установил, что существуют 7 комбинаций ячеек с оди­наковыми или разными сторонами (осями) и углами. Для углов он принял только два варианта: равный 90° и не равный 90°. Только один угол во всей его системе в порядке исключения имеет 120°. В самом скверном случае все три оси и все углы ячейки различны по величине, при этом в ней нет углов ни в 90, ни в 120°. Все в ней косо и криво, и, можно подумать, в мире кристаллов таким не должно быть места. Между тем к ним относится, например, сульфат меди (медный купорос), голубые кристаллы которого обычно всем так нравятся

В некоторых из этих 7 пространственных решеток элементар­ные «кирпичики» можно упаковать по-разному. Для нас, знающих сегодня о строении атома, это нетрудно представить и продемон­стрировать с помощью шариков для пинг-понга. Но 125 лет назад гениальная идея Браве была новаторской и открывала новые пути в науке. Весьма вероятно, что и Браве исходил из узоров кафеля или мотивов шахматной доски

Если мы разделим квадратные поля диагоналями, то возни­кает новый рисунок из квадратов, стоящих на углах. В трехмерном пространстве это соответствует кубу, разложенному на шесть пи­рамид. Каждая такая пирамида составляет половину октаэдра

Те, кто когда-нибудь выращивал кристаллы поваренной соли, знают, что соль может кристаллизоваться в кубах, а может — в октаэдрах. Иными словами, экспериментальные наблюдения сов­падают с теоретическими соображениями

Испробовав возможные варианты упаковки для всех семи осе­вых систем, Браве вывел 14 решеток

Рассматривая решетки Браве внимательней и пробуя мыслен­но построить из них кристаллы, мы, вероятно, увидим, как можно провести в них плоскости и оси симметрии. Эти возможности сразу расширятся, если мы в одной из элементарных ячеек образу­ем новые грани. Возьмем куб, поста­вим его на угол и обрежем (все так же мысленно) все углы, тогда у него образуются совершенно новые треугольные грани. А из квад­ратных граней возникнут восьмиугольники: тем самым появятся новые мотивы симметрии

Анализ элементов симметрии в каждой из осевых систем кри­сталлических решеток приводит к возникновению 32 классов сим­метрии. Все многообразие минералов в природе подразделяется на основе 32 классов симметрии. Вооруженные этими знаниями, задумаемся о классификации пяти тел Платона. То, что куб, с его тремя равными осями и тремя прямыми углами, относится к куби­ческой осевой системе (сингонии), не нуждается в доказательстве. В рамках более детального подразделения он принадлежит пентагон - тетраэдрическому классу симметрии. Не стану здесь приводить названий других классов из-за их сложности. Однако стоит обратить внимание на термин «тетраэдрический», так как тетраэдр — одно из платоновых тел

Тетраэдр можно образовать из куба. Осталь­ные платоновы тела также относятся к кубической системе. Древ­ние греки, надо думать, ужасно расстроились бы, знай они, что такой прозаический минерал, как серный колчедан, имеет ту же симметрию, что и их «совершенные» тела

Асимметрия

Асимметрия внутри симметрии

Собственно говоря, симметрия и асимметрия должны бы взаимно исключать одна другую — как черное и белое или как день и ночь. Так оно и происходит на самом деле, пока симмет­рия или ее антипод рассматриваются по отношению к одному и тому же телу

Тот факт, что растворы оптически активных веществ вра­щают плоскость поляризации в точности так же, как кристаллы, однозначно доказывает, что само кристаллическое состояние не может служить причиной этого явления. Ведь в растворе кристал­лов нет. Но как в оптически активном кристалле, так и в раст­ворах, обладающих этим свойством, присутствуют молекулы. Кристаллы, построенные — подобно металлам — из одних только атомов, оптически неактивны (кроме того, они непро­зрачны!) Высокоупорядоченный кристалл, состоящий из ионов Na + CI - ,тоже не действует на проходящий свет. Однако кварц имеет более сложное строение, чем хлорид натрия. Кварц — это диоксид кремния, химическая формула которого Si 0 2 . Кремний, как и углерод, находится в четвертой группе периодической системы. А углерод постоянно изобра­жают со связями: =С=

Кремний, принадлежащий к той же группе, что и углерод, также четырехвалентен. Химия кремния, подобно химии углеро­да, весьма сложна. Кристаллическая структура кварца пред­ставляет собой трехмерный каркас из длинных цепей, построен­ных в форме винтовых лестниц. Разумеется, винтовые лестницы полностью асимметричны. Однако они бывают лево- и право­сторонними, как изображение и его зеркальное отражение. Связанные между собой асимметричные цепи образуют либо ле­вый, либо правый кристалл. Соответственно они оказывают оптическое влияние на свет

У водорастворимых кристаллов органических соединений зер­кальная симметрия молекул прослеживается как в твердом, так и в растворенном состоянии. Известный пример — винная кислота. Она встречается в виде левых и правых кристаллов. Соответ­ственно ведет себя и ее раствор. Под правым направлением здесь всегда понимается направление по часовой стрелке. Таким обра­зом, левая винная кислота вращает плоскость поляризации про­тив часовой стрелки. Нидерландский физикохимик Якоб Хендрик Вант-Гофф (1852—1911) объяснил такое поведение винной кислоты, исходя из строения ее молекулы. При одном и том же химическом составе можно написать три разные структурные формулы винной кислоты. Каждый из двух центральных атомов углерода в любом случае связан с группой СООН. В органической химии эта группа — отличительный признак кислоты. Проглотив таблетку аспирина или попробовав на язык уксус, вы ощущаете кисловатый вкус, он обусловлен именно присутствием группы СООН. Для нас, однако, важнее правая и левая связи атомов углерода. Они связывают либо атом водорода, либо группу ОН. Именно здесь кроется возможность возникновения двух зеркально-симметричных вариантов их взаимного располо­жения и, помимо того, третьего варианта, который симметричен сам по себе

В книгах по химии часто можно встретить обозначения L - и D-винная кислота, производные от латинских слов laevus — левый и dexter — правый. Теперь нам уже нетрудно сообразить, ч то вещество, носящее название «декстро-энерген», должно быть оптически активным и притом правовращающим. В молекуле виноградного сахара (торговое наименование которого и есть «декстро-энерген » ) присутствует цепочка из атомов углерода, «подвески» которой могут быть синтезированы право- или лево- стор онн им и

Вант-Гофф, впрочем, не пользовался такой простой плоскост­ н ой моделью, как мы. Он сразу рисовал ее в объемном изображении, что больше отвечает действительности. Каждый из 4-ёх углеродных атомов винной кислоты расположен в вершине тетраэдра. К этим угловым атомам углерода и привязаны прочие атомы, кислородные и водородные

Вследствие этого из одного совершенного платонова т ела (каким является тетраэдр) возникают две различные, зеркально-симметричные формы. Однако здесь, как и в любой области е стествознания, мы не должны воспринимать такие описания б уквально. Речь идет всего лишь о картинках и моделях, назна чение которых — помочь нам разобраться в тех или иных явле­ н иях. Чтобы легче представить, как из асимметричных молекул вдруг возникает симметричный кристалл, рассмотрим несколько п римеров на плоскости

Раньше под рубриками вроде «В часы досуга» порой встречались задачи, где предлагается разложить одну плоскую фигуру, ска жем шестиугольник и образовать из нее другую плоскую фигуру, например квадрат. В данном случае две высокосимметричные плоские фигуры составляются из одинаковых асимметричных элементов. В свое время ведущим умельцем в такого рода раз­ложениях и сложениях слыл австралиец Гарри Линдгрен. Чтобы еще больше затруднить решение подобных задач, ставится дополнительное условие: обойтись, возможно, меньшим числом составных элементов. Линдгрен и другие любители, увлекавшие­ся разложением фигур, отваживались разлагать даже узоры кафеля. В качестве иллюстрации позаимствуем разложение узора из восьмиугольников с маленькими квадратами в мотив из квад­ратов той же площади, что и восьмиугольники, причем малые квадраты в новом узоре сохраняются, но в несколько смещенном положении

Когда Вант-Гофф опубликовал свою теорию о правых и левых молекулах, она была встречена в штыки. Многие из его современников никак не хотели согласиться с тем, что атомы в молекуле должны располагаться именно так, как их поместил Вант-Гофф. Однако теория нидерландского профессора давала единственно удовлетворительное объяснение вращению поляри­зованного света, поэтому она все же получила признание. Тем временем химики разработали методы прямого определения формы молекул. И мы теперь знаем, что Вант-Гофф был прав

Асимметрия в природе

Природа всегда отбирает среди множества вариантов те, ко­торые проще и надежнее всего обеспечивают жизнь и ее продол­жение. Естественно, ее действия отличны от действий человека, отыскивающего нужное слово в словаре или решение задачи в учебнике. Она просто вслепую воспроизводит все решения, как верные, так и ложные, полагаясь на то, что наилучшее из них пробьет себе дорогу, выживет в процессе эволюции, на протяже­нии сотен тысяч или миллионов лет. Подобно тому, как это происходит и в технике (здесь уж, конечно, не без помощи человека), в живой природе побеждает то, что наиболее просто и надежно

Одна из важнейших предпосылок жизни — наследственность. Потомками лошадей снова и снова должны быть лошади. И в своих основных чертах они должны походить на родителей

Австрийский естествоиспытатель Грегор И. Мендель (1822— 1884) в 1860 г. на основании своих знаменитых опытов по гибри­дизации сортов гороха пришел к выводу, что дети половину наследственных факторов получают от одного из родителей, а половину — от другого. Благодаря успехам современной микро­биологии мы довольно отчетливо представляем себе, как это осу­ществляется с помощью носителей наследственности — генов

Мы вернулись к модели генной спирали, построенной Уотсоном и Криком. При оплодотворении жен­ского яйца наследственность может передаваться только в материальной форме. При этом однозначно должно указываться, какие именно признаки наследуются. Здесь сразу же намечаются два возможных пути осуществления этой задачи

Первый путь — это образование определенных химических соединений, каждое из которых соответствует наследуемому свойству. Однако он содержит много недостатков. И прежде всего он сопряжен с использованием огромного количества раз­личных соединений для передачи всего набора наследуемых свойств. Вполне вероятно, что для передачи свойства «длинные ноги» лошади потребуется совсем иное химическое соединение, чем для передачи того же свойства блохе или слону. Кроме того, некоторые соединения неоднозначны: достаточно вспомнить о левой и правой винной кислоте. Более простым является другой путь кодирования информации, основанный на том же принципе, что и работа телеграфного аппарата системы Морзе или теле­тайпа. Телеграф «знает» и использует только три «структурных элемента»: тире, точку и пробел. Но информация, записанная с помощью азбуки Морзе, может содержать ошибки (а при пере­даче наследственности это недопустимо). Так, увидев на теле­графной ленте бессмысленное слово «зеркало», телеграфист, надо думать, поймет из контекста, что имеется в виду зеркало. В слу­чае особых сомнений он может запросить передающую станцию. Однако во избежание подобных недоразумений, чтобы исклю­чить искажения, лучше подстраховаться. Наиболее простой спо­соб — при передаче каждая буква дублируется: «ззееррккааллоо». Вероятность дважды заменить букву гораздо меньше, чем совер­шить ошибку один раз. К тому же при таком способе кодиро­вания всегда известно, где начало, а где конец сообщения. Если мы прочитали на ней «топор», то однозначно заключаем, что это никак на «ропот». В силу всех этих преимуществ в природе в ходе естественного отбора для передачи наследствен­ной информации победил принцип «азбуки Морзе». Лента, несу­щая эту информацию, состоит из молекул сахара и фосфата, построенных в два ряда. В каждом ряду они чередуются через одну: сахар — фосфат — сахар — фосфат. В пределах обоих ря­дов напротив каждой молекулы сахара располагается тоже молекула сахара, а против каждой молекулы фосфата — молеку­ла фосфата. Промежутки между парами сахар — сахар (но не фосфат — фосфат) заполнены еще четырьмя видами химических соединений, которые получили следующие названия: аденин (А), цитозин ( Z ), гуанин ( G ) и тимин (Т). Запомним лишь обозначающие их буквы A , Z , G и Т. А всегда связано с Т, a Z — с G . Одна из этих групп всякий раз связывает пары сахар — сахар обоих рядов. В наглядном изображении получается полоса, напо­минающая лестницу, поручни которой состоят из сахара и фос­фата, перекладины (ступеньки) — из групп А — Т или   Z —G. Для ступенек возможны комбинации Т — А и А — Т наряду c Z —G и G—Z. Кроме того, последовательность перекладин может быть произвольной: скажем, комбинации Z — G могут следовать под­ряд несколько раз. Но пока такая лестница, подобно лестнице, которой пользуется электрик, остается прямой, она все еще со­храняет возможность оказаться симметричной. Последствия этого могли бы стать катастрофическими для любого живого существа. Но, к счастью, концы «лестницы» спирально закру­чены. Такая абсолютная асимметрия исключает всякую генети­ческую ошибку

Построив свою модель, Уотсон и Крик получили первое доказательство ее правильности. Размеры отдельных молекул были им известны. Действительности могла соответствовать лишь такая модель, к которой свободно подходили бы все струк­турные элементы. И только двойная спираль удовлетворяла этому требованию. Те, кто ближе знакомые с этим предме­том, знают, что речь все время идет о дезоксирибонуклеиновой кислоте. Ввиду громоздкости этого слова чаще принято обозна­чать ее сокращенно — ДНК. Молекула ДНК, помимо способно­сти к безошибочному обозначению наследуемых свойств, имеет и еще одно преимущество: она одинаково пригодна как для блох, так и для слонов и, конечно, для людей тоже. Комбинацией из четырех букв А, Z, Т, G все свойства обозначаются точно так же, как это делается посредством трех знаков при использова­нии азбуки Морзе. Конечно, «телеграфная лента» в этом случае должна быть достаточно длинной; чтобы на ней могли уместить­ся все команды будущему живому организму. Мы знаем из биологии, что у человека носителями наследственности служат 46 похожих на палочки хромосом. Если растянуть их двойные спирали, то получится лента длиной около метра. А так как ато­мы и молекулы очень малы (на одном сантиметре их помещается 100 млн.), то на протяжении одного метра оказывается возмож­ным записать всю необходимую информацию. Хотя спирали и асимметричны, можно представить себе их зеркальные отраже­ния. Так существует ли вероятность того, что в некой семье появятся двое детей, из которых один ребенок окажется зеркаль­ным отражением другого (будет «закручен в другую сторону»), ибо его генные спирали, пусть одинаковые со спиралями генов второго ребенка, зеркально симметричны по отношению к ним? Нет! Все витки ДНК всегда направлены в одну сторону — впра­во, как у обычного штопора. Поэтому в природе не существует зеркальных отражений с генными спиралями, закрученными в обратную сторону. Благодаря абсолютной асимметрии и недопу­щению зеркального отражения вся заключенная в генах инфор­мация не может быть перепутана

Вирусы — белковые соединения, стоящие на пороге живо­го, — тоже имеют правое направление вращения. Некоторые исключения обнаружены лишь у антибиотиков. Они «закручены» влево; на этом, очевидно, и основано их действие

Вероятно, таков вообще признак жизни — ее стремление образовывать из симметричных молекул асимметричные и затем делать выбор в пользу одного из возможных видов асимметрии. Эта мысль, по-видимому, ведет свое начало от французского химика, биолога и медика Луи Пастера (1822—1895). Уже из одного перечня его профессий видно, что он был человеком поистине универсальных знаний. Человечество обязано ему предохра­нительными прививками против бешенства и других заболеваний. Ему принадлежит открытие, что кипячение убивает микробов. К Пастеру восходят дезинфекция и методы стерилизации. Он первым привел также весьма важное для философии и естество­знания доказательство того, что живое возникает только из живого

В молодости Пастер занимался винной кислотой — той самой, о которой мы уже рассказывали. Ему было известно, что наряду с винной кислотой существует химически тождественная ей виноградная кислота. Но обе эти кислоты различаются по их оптическим свойствам. Раствор винной кислоты оптически акти­вен, он вращает поляризованный свет. Раствор виноградной кислоты, напротив, совсем не отклоняет света. Рассматривая кристаллы обеих кислот под микроскопом, Пастер обнаружил, что у винной кислоты они являются либо правыми, либо левыми, а у оптически нейтральной виноградной кислоты поло­вина кристаллов — левые и половина — правые. Тогда он проде­лал весьма трудоемкую работу по сортировке кристаллов вино­градной кислоты и перевел в раствор отдельно правые и левые кристаллы. Оба раствора, как и ожидалось, оказались оптически активными. Часть виноградной кислоты вращала световой луч влево, а часть — вправо

Лишь 50 лет спустя Вант-Гофф сумел объяснить эти явления. Однако и Пастер был уже весьма близок к их объяснению. Он продолжил свои эксперименты, помещая микробов в растворы виноградной кислоты. Выяснилось, что микробы способны различать левые и правые молекулы. Они избирательно поедали лишь один их вид . Измерить это оказалось очень просто: в ходе опыта по воздействию микробов на растворы нейтральная виноградная кислота становилась оптически активной. Пастер пришел к за­ключению, что живые существа, предпочитающие асимметрич­ные молекулы, тоже должны быть асимметричными. Теперь мы знаем, что он был прав. Не только в спирали ДНК, но и всюду, где присутствуют белковые молекулы (а микробы — это высоко­молекулярные органические белки), мы встречаемся со спираль­ным строением

Познать самих себя призывал людей еще великий Сократ. Но цель эта не достигнута. И менее всего изученным остает­ся тот орган человека, без которого не было бы ни Сократа, ни науки. Речь идет о человеческом мозге.

Конечно, известно о нем уже многое. Но каждое деся­тилетие специалисты убеждаются, что их знания весьма ог­раниченны. Мозгом занимаются целые области современ­ной науки /1/.

Очень популярны сведения о весе мозга, его строении, знаменитых "извилинах" и тому подобное. Вес мозга колеблется (в норме) от 1100 до 3000 граммов. Что из этого следует для психики – одно­значно сказать трудно. В конце концов, у европейских кро­маньонцев объем черепной коробки достигал 1880 куб. см, а у современного европейца – только 1450 куб. см. Поглупели? Вряд ли для таких выводов есть основания.

 Индивидуальность личности во многом определяется спецификой взаимодействия отдельных полушарий мозга. Впервые эти отношения были экспериментально изучены в 60-е годы нашего века профессором психологии Калифор­нийского технологического института Роджером Сперри (в 1981 году за исследования в этой области ему была присуж­дена Нобелевская премия).

Первые исследования Р. Сперри были связаны с поиском "следов" памяти. У кошек и обезьян рассекали мозолистое тело – толстый пучок нервных волокон, соединяющие полушария, – и смотрели, может ли навык, заученный од­ним полушарием, перейти в другое. Кошке завязывали один глаз и учили ее распознавать квадрат. Потом с "необученно­го" глаза снимали повязку и надевали ее на "обученный". Квадрат кошка не узнавала: необученный глаз так и оста­вался необученным. Зато теперь его можно было научить распознавать круг, и тогда в одном полушарии появлялся один навык, а в другом – другой. Полушария можно было на­учить двум противоположным навыкам – идеальная модель раздвоения личности?

Расщепление мозга (лоботомия – так стала именовать­ся эта операция) испытали и на людях: перерезка мозолисто­го тела избавляла больных с тяжелой формой эпилепсии от мучительных припадков. После подобных операций у пациентов наблюдались признаки раздвоения личности, хотя никто не обучал их полушария и не вторгался ни в одно из них.

Конечно, функциональная асимметрия полушарий известна давно: подавляющее большинство человечества делится на правшей и левшей, почти у всех у нас есть веду­щий глаз и ведущее ухо, речью ведает либо левое (у правшей), либо правое полушарие. Но чтобы правая рука не зна­ла, что делает левая (а именно это и происходило, если сиг­налы подавались в одно из полушарий "расщепленного" мозга), чтобы предмет, опознанный на ощупь одной рукой, человек не узнавал, ощупывая его другой рукой, – это стало сенсацией.

История изучения функциональной межполушарной асиммет­рии у человека началась более 100 лет тому назад /2/. Доминантность полушарий по отношению к речевым функциям впервые была про­демонстрирована французским хирургом и антропологом Брока. В 1861 г. он доложил об открытиях, сделанных им во время вскры­тия двух больных страдавших моторной афазией – в обоих слу­чаях поражения локализовались в лобной доле. Однако тогда он не акцентировал внимание на стороне повреждения. Только позднее в  1863 г. сообщая о ре­зультатах вскрытия уже восьми больных, он отметил, что все повреждения находились и левой лобной доле, и осторожно за­метил: "Я не смею делать выводов и жду новых открытий". Отсюда видно, как колебался Брока, прежде чем принять революционную идею об асимметрии полушарий чело­века. Между тем новые открытия не заставили себя ждать, и в 1865 г. Брока произнес свой знаменитый афоризм: "Мы говорим левым полушарием".

Спустя десятилетие после открытий Брока, Вернике показал, что поражение задней трети первой височ­ной извилины левого полушария человека приводит к нарушению понимания речи и больной начинает воспринимать речь как не­членораздельное шумы. Одновременно нарушается и экспрессивная речь, в речи больного появляются парафазии. Однако в этих случаях рецептивные нарушения речи остаются ведущими, что и дало Вернике основание обозначить весь этот синдром как синд­ром сенсорной афазии.

Правильность идеи Брока быстро подтвердилась и в резуль­тате родилась теория доминантности мозговых полушарий. Ряд экспериментаторов-клиницистов (в том числе и сам Брока) вскоре сделали важное дополнение, обнаружив, что левополушарность речи наблюдалась только у правшей, у левшей же доминантным по речи как будто бы оказывалось правое полушарие. Эти откры­тия привели к революции в физиологической и медицинской мысли. С точки зрения физиологии реальность церебральной латерализации была доказана. С точки зрения медицины афазия пре­вратилась из курьезного феномена в важный симптом фокального поражения мозга.

Впоследствии концепция доминирования левого полушария (у правшей) стала применяться не только по отношению к языко­вым функциям, но была распространена и на другие аспекты по­ведения и познания. Липманн (Leipmann, 1900) определил апраксию (т.е. неспособность выполнять целесообразный моторный акт) как отдельную категорию дефицита поведения. Он соотнес выполнение этой функции с левым полушарием, что полностью подтвердилось дальнейшими исследованиями. Мари (Marie, 1906), Хед (Head, 1926), Гольдштейн (Goldstein, 1924) подчеркивали, что важными компонентами афазии являются интеллектуальные нарушения. Хед определял афазию как первопричину расстрой­ства "символического формулирования и выражения", а не только как изолированное нарушение способности говорить, чи­тать и писать. Гольдштейн полагал, что определенные формы афазии связаны с ухудшением абстрактного мышления. Эта точка зрения, которой придерживались и другие клиницисты (Trous­seau, 1864; Jackson, 1874), приводила к заключению, что левое полушарие у человека является доминирующим не только для языка в узком смысле слова, но и для интеллектуальных функций высшего порядка. Расширению концепции доминантности левого полушария способствовало также обнаружение Герстманом (Gerstmann, 1924) "пальцевой агнозии", т.е. неспособности больного описать свои пальцы и пальцы экспериментатора. Объединяя этот весьма необычный дефект с тремя другими типами нарушения поведения (дефициты различения правого и левого, нарушения при счете и письме) в единый синдром, он утверждал, что послед­ний возникает вследствие поражения левого полушария.

В результате проведенных исследований сформировалась концепция тотального доминирования левого полушария человека в высших психических функциях, или, как она еще может быть обозначена, "иерархическая теория полушарного доминиро­вания". Левое полушарие признавалось доминирующим не только в отношении языка, но для концептуального мышления, опре­деленных типов моторной деятельности и ориентации тела. Пра­вое полушарие при этом третировалось как "субдоминантное", "малое", "немое", а иногда даже как "безграмотное" и "глухое". До 60-х гг. XX в. теория тотального доминирования левого полу­шария у человека почти безраздельно господствовала в невроло­гии.

Представление о доминировании левого полушария подразу­мевало, что правое полушарие является подчиненным, или суб­доминантным, т.е. что оно не имеет каких-либо специфических свойств, как это отмечается по отношению к левому. Однако на протяжении всего периода возникновения и развития концепции тотального доминирования левого полушария несколько клиницистов, первым из которых нужно назвать английского невролога Джексон (Jаckson, 1864, 1874, 1876), отвергали эту односторон­нюю формулировку природы доминантности мозговых полушарий и настаивали на том, что и правое полушарие имеет только ему одному присущие особенности.

Имеются многочисленные доказательства того, что восприятие эмоциональных сигналов находится под контролем правого полушария. Правосторонние корковые разрушения делают невозможным декодирование эмоционального настроения собеседника, нарушают распознавание лицевой экспрессии эмоций. Разрушения в правом полушарии (но не в левом) сопровождаются потерей способности выразить или передать свое переживание интонацией голоса /3/.

Правое полушарие более тесно, чем левое, связано с вегетативными и телесными реакциями. Из клинической практики известно, что пациенты более осведомлены о нарушениях и отклонениях в реакциях на левой стороне тела. Человеку обычно легче постукивать синхронно в такт с сердечными ударами левой рукой.

Одно время казалось, что исключительно правое полушарие ответственно за обработку эмоциональных стимулов. Это дало основание рассматривать левое полушарие как "неэмоциональную структуру" (Tucker D.M. 1981). Однако более поздние исследования показали, что оба полушария вносят свой вклад в эмоциональные переживания. Наиболее вероятной представляется точка зрения, согласно которой правое полушарие в большей степени связано с негативными эмоциями. Это заключение в значительной степени основано на клинических наблюдениях. При ослаблении функции левого полушария больные беспокойны, пессимистически настроены, часто плачут. При снижении активности правого полушария возникает беспричинная эйфория, индифферентное настроение или частый смех.

Т.А. Доброхотова и Н.Н. Брагина установили, что больные с поражениями левого полушария тревожны, озабочены. Правостороннее поражение сочетается с легкомыслием, беспечностью. Эмоциональные состояния благодушия, безответственности, беспечности, возникающие под влиянием алкоголя, связывают с преимущественным воздействием на правое полушарие мозга.

По данным В.Л. Деглина, временное выключение левого полушария электросудорожным ударом тока вызывает сдвиг в эмоциональной сфере "правополушарного" человека в сторону отрицательных эмоций. Настроение ухудшается, он пессимистически оценивает свое положение, жалуется на плохое самочувствие. Выключение таким же способом правого полушария вызывает противоположный эффект – улучшение эмоционального состояния. В.Л. Деглин считает, что положительные эмоциональные состояния коррелируют с усилением альфа-активности в левом полушарии, а отрицательные эмоциональные состояния – с усилением альфа-активности в правом и усилением дельта-колебаний в левом полушарии.

Демонстрация фильмов разного содержания с помощью контактных линз раздельно в правое или в левое поле зрения показала, что правое полушарие быстрее реагирует на слайды с выражением печали, а левое – на слайды радостного содержания. При этом правое полушарие быстрее опознает эмоционально выразительные лица независимо от качества эмоции.

Распознавание мимики в большей степени связано с функцией правого полушария. Оно ухудшается при его поражении. Повреждение височной доли, особенно справа, нарушает опознание эмоциональной интонации речи. При выключении левого полушария независимо от характера эмоции улучшается распознание эмоциональной окраски голоса.

Большинство исследователей склонны объяснять эмоциональную асимметрию полушарий головного мозга как вторичную эмоциональную специализацию (Симонов П.В., 1987). Согласно Л.Р. Зенкову, выключение левого полушария делает ситуацию непонятной, невербализуемой и, следовательно, эмоционально отрицательной. При выключении правого полушария ситуация оценивается как простая, ясная, понятная, что вызывает преобла­дание положительных эмоций. Следовательно, нарушение инфор­мационных процессов после отключения одного из полушарий вторично сказывается на эмоциогенных механизмах.

По данным последних публикаций, локальные мозговые пора­жения, вызывающие изменения в эмоциональной сфере, находят во фронтальных областях коры. Это неудивительно, так как между фронтальной корой и лимбической системой существуют реципрокные отношения. По мнению Р. Давидсона и его коллег, имен­но фронтальные полюса регулируют аффективные переживания. Регистрация ЭЭГ у пациентов с депрессией выявляет особый тип функциональной асимметрии, характерный для этих больных: у них фокус активации находится во фронтальной и центральной обла­стях правого полушария.

По результатам исследований Р. Давидсона примерно 50% са­мооценок состояния "счастья" определяется доминированием ак­тивности во фронтальных областях левого полушария. У 10-месяч­ных младенцев восприятие лица человека с выражением счастья сочеталось с большей ЭЭГ-активацией в левом полушарии (Davidson R.J., Fox N.A., 1982). В другом исследовании новорож­денным давали пробовать сладкий сироп или раствор лимонной кислоты. Проглатывание сладкой жидкости вызывало интерес на лице ребенка и ЭЭГ-активацию в левой фронтальной коре. Грима­са отвращения и активация в правой фронтальной коре были ре­акциями на кислый сок.

Асимметрия ЭЭГ-активации исследована у 10-месячных младен­цев в зависимости от типа улыбки. Анализировались улыбки на при­ближение матери и другого человека. На мать ребенок реагировал улыбкой, при которой активировались большая скуловая мышца и круговая мышца глаза (улыбка Дачена). На приближение незнаком­ца ребенок также улыбался, однако круговая мышца глаза не реаги­ровала. Первый тип улыбки (искренний) коррелировал с относительно большей активацией в левой фронтальной коре, второй тип улыбки – с ак­тивацией правой фронтальной коры (Davidson R.J., Fox N.A., 1982).

Н. Фоке и Р. Дэвидсон предложили модель, объясняющую знак эмоций в зависимости от межполушарных отношений. Согласно их концепции левая и правая фронтальная кора – анатомический субстрат соответственно для выражения тенденции "приближения" (approach) и "отказа" (withdrawal). Противостояние этих двух тенденций и определяет знак эмоции. Доминирование тенденции "приближения" сочетается с активацией левой фронтальной коры и появлением положительных эмоций.

Комментируя эти данные, П.В. Симонов (1997) отмечает, в соответствии с потребностно-информационной теорией эмоций можно связать ПФК с прагматической информацией, приобретенной ранее и хранящейся в памяти, а ЛФК – с информацией только что поступившей. Когда доминирует активность левого фронтального неокортекса, субъект располагает только новой информацией, которая не сопоставляется с ранее приобретенной. Поэтому никаких проблем не возникает и все эмоции имеют положительный знак. При доминировании активности правого фронтального неокортекса субъект располагает прежними знаниями, но понимает, что не может учитывать новую информацию, и поэтому страдает.

В норме оба полушария работают в тесном взаимодействии, дополняя друг друга /3/. Различие между левым и правым полушария­ми можно выявить, не прибегая к хирургическому вмешательству – рассечению комиссур, связывающих оба полушария. Для этого может быть использован метод "наркоза полушарий". Он был со­здан в клинике для выявления полушария с речевыми функциями. По этому методу в сонную артерию на одной стороне шеи вводят тонкую трубку для последующего введения раствора барбитуратов (амиталнатрия). В связи с тем, что каждая сонная артерия снабжает кровью лишь одно полушарие, снотворное, введенное в нее, по­падает в одно полушарие и оказывает на него наркотическое дей­ствие. Во время теста больной лежит на спине с поднятыми рука­ми и считает от 100 в обратном порядке. Через несколько секунд после введения наркотика можно видеть, как бессильно падает одна рука пациента, противоположная стороне инъекции. Затем наблюдается нарушение в счете. Если вещество попадает в речевое полушарие, остановка счета в зависимости от введенной дозы длит­ся 2-5 мин, если в другое полушарие, задержка составляет всего несколько секунд. Таким образом, применение этого метода дает возможность на время выключать любое полушарие и исследовать изолированную работу оставшегося.

Использование методик, с помощью которых можно избирательно воздействовать только на одно полушарие, позволило исследователям продемонстрировать значительные различия в умственных способностях двух полушарий. Полагают, что левое полушарие участвует в основном в аналитических процессах; это полушарие – база для логического мышления. Преимущественно оно обеспечивает речевую деятельность – ее понимание и построение, работу со словесными символами. Обработка входных сигналов осуществляется в нем, по-видимому, последовательно. Правое полушарие обеспечивает конкретно-образное мышление и имеет дело с невербальным материалом, отвечая за определенные навыки в обращении с пространственными сигналами, за структурно-пространственные преобразования, способность к зрительному и тактильному распознаванию предметов. Поступающая к нему информация обрабатывается одномоментно и целостным способом.

Правое полушарие лучше, чем левое, справляется с различением ориентации линий, кривизны, многоугольников неправильных очертаний, пространственного расположения зрительных каналов, глубины в стереоскопических изображениях. Однако левое полушарие обнаруживает большие способности в отношении других аспектов зрительно-пространственного восприятия. Оно лучше дифференцирует нарисованные лица, если они различаются только одной чертой. Правое полушарие лучше различает их, когда они отличаются не одной, а многими чертами. Предполагают, что левое полушарие превосходит правое, когда задача состоит в выявлении немногих четких деталей, а правое доминирует при интеграции элементов в сложные конфигурации. Это различие согласуется с клиническими данными. При патологиях правого полушария рисунки больных утрачивают целостность общей конфигурации. При поражении левого полушария основная конфигурация объекта обычно воспроизводится, но рисунок обеднен деталями. "Пространственное" правое и "временное" левое полушарие вносят каждое важный вклад в большинство видов когнитивной деятельности. По-видимому, у левого полушария больше возможностей во временной и слуховой областях, а у правого – в пространственной и зрительной.

Следует отметить, что каждое полушарие, функционируя изолированно, предпочитает формировать целостное изображение. Это особенно очевидно у больных с "расщепленным мозгом". Когда такому больному, фиксирующему точку на экране, предъявляли рисунки-химеры (изображения, составленные из половинок двух разных объектов) и спрашивали, что он видит, он называл объект, соответствующий правой части химерного рисунка, проецирую­щейся в левое полушарие. Неудивительно, что он называл правый "полуобъект", так как у подавляющего большинства правшей за речь ответственно левое полушарие. Однако "говорящее" левое полушарие совершенно "не осознавало", что ему предъявляется только половина стимула. Когда же после этого опыта испытуемо­му в условиях свободного зрения (без фиксации определенной точ­ки) предъявляли целые изображения тех же объектов и просили показать, какой из них он видел раньше, он почти всегда выбирал тот предмет, который раньше находился слева и воспринимался правым полушарием (Леви Д., 1995). Не умея "говорить", правое полушарие без слов демонстрировало, что воспринимает полови­ну стимула как целый объект.

Нормальные люди в этих условиях сразу видят необычную, составную природу рисунков. При выполнении других тестов – с абстрактными фигурами, цветовыми стимулами – получены ана­логичные результаты: у человека с "расщепленным мозгом" объект воспринимается одним полушарием и всегда нерасчлененным.

Таким образом, другое полушарие в этих экспериментах ведет себя так, как будто оно "ничего не видит". С каким полушарием это может произойти, зависит от решаемой задачи. При этом не­полнота стимула не означает такой же неполноты восприятия. От­вечающее полушарие (как левое, так и правое) интерпретирует изображение как целое, хотя предъявляется только его половина. Мозг строит модели целостного мира, и когда нет полной инфор­мации, как у больных с "расщепленным мозгом", они создаются на основе интеграции сенсорных данных с информацией, извле­каемой из памяти, со знаниями, которые не позволят объекту рас­щепляться на две половинки.

Существует точка зрения, согласно которой в функциях раз­личных полушарий представлены различные способы познания. Функции левого полушария отождествляются с осознанными, логическими процессами мышления, функция правого полуша­рия – это интуитивное мышление. По мнению Р. Орнстейна (R. Ornstein), сегодня принятая система образования строится исклю­чительно на развитии у детей способностей левого полушария, т.е. языкового и логического мышления, а функции правого полуша­рия специально не развиваются. Невербальному интеллекту не уде­ляется должного внимания.

Интересную гипотезу развивает Д. Кимура (Kimura D., 1992). Исходя из того, что речевая функция левого полушария связана с движениями ведущей правой руки, она предполагает, что речевая специализация левого полушария является следствием не столько асимметричного развития символических функций, сколько развития определенных двигательных навыков, которые помогают в общении. Язык появился потому, что левое полушарие оказалось приспособленным для некоторых видов двигательной активности.

 Связь левого полушария с определенными типами движений хорошо известна в клинике. Рука, соответствующая полушарию с речевым центром (чаще правая), обнаруживает большие способности к тонким движениям, чем рука, связанная с недоминантным полушарием. Больные с повреждением левого полушария без правостороннего паралича, тем не менее, испытывают затруднения в воспроизведении сложной последовательности движении рук и сложных позиций пальцев. У глухонемых поражение левого полушария сопровождается распадом языка жестов, что сходно с распадом речи у нормально говорящих людей.

Д. Кимура полагает, что в эволюционном плане именно развитие руки как органа языка жестов, ее манипулятивных способностей и привело к формированию особых функций левого полушария. Способность руки к тонким манипуляциям была передана артикуляционным органам.

Стремление понять, в чем состоит своеобразие взаимоотношений двух половин мозга в процессе творческой деятельности побудило ученых к изучению особенностей организации полушарий у людей искусства. Была высказана гипотеза о повышении способности творческих личностей к интеграции функций обоих полушарий (Леви Д., 1995). Исследования действительно подтвердили, что для обычных людей характерна более строгая латерализация функций полушарий при большей их билатеральности у художников. У художников-профессионалов на протяжении творческой жизни каждая половина мозга (а не только правая) развивает структуры, формы и методы, необходимые для художественного творчества. Поэтому в случае повреждения одного полушарий в зрелом возрасте второе сохраняет как свои врожденные художественные способности, так и приобретенные на основе взаимодействия с другим полушарием.

Исследование музыкантов тоже наводит на мысль о более двустороннем представительстве у них функций, важных для музыкальных способностей, по сравнению с не столь одаренными людьми. Восприятие мелодии включает образное представление громкости и высоты тонов, специфического звучания аккордов, темпа и ритма. Доминирование того или другого полушария зави­сит от того, какому аспекту мелодии уделяется больше внимания. Так, хорошо знакомые мелодии могут кодироваться в виде цело­стного образа (гештальта), тогда как незнакомые мелодии требуют аналитического подхода. Установлено, что локализация активации в полушарии при прослушивании музыкальных произведений за­висит от музыкальной грамотности слушателя. Более образован­ные в музыкальном отношении испытуемые, использовавшие аналитическую стратегию и умеющие обнаруживать сходство и различие звуков в аккордах, по данным ПЭТ, показывают боль­шее потребление глюкозы левым полушарием. У лиц, не имеющих музыкального образования, прослушивание музыки усиливало метаболическую активацию (по глюкозе), особенно в теменных и затылочно-височных областях правого полушария.

Вместе с тем у одаренных музыкантов двустороннее предста­вительство музыкальных способностей встречалось чаще, чем обыч­но бывает у менее талантливых музыкантов. Сведения о музыкан­тах с односторонним поражением мозга подтверждают, что у них, так же как у художников, соответствующие способности сохраня­ются лучше, чем у обычных людей. Известны случаи, когда после левостороннего инсульта композиторы продолжали успешно за­ниматься своей профессиональной деятельностью. Русский компо­зитор В.Я. Шебалин успешно сочинял музыку и после левостороннего инсульта, вызвавшего у него тяжелую форму афазии. У обыкновен­ных людей различные аспекты их музыкальных способностей свя­заны с разными полушариями и неодинаково страдают при одно­стороннем поражении мозга. Немузыканты склонны воспринимать мелодии "глобально", т.е. в основном правым полушарием.

Музыканты-профессионалы, по-видимому, различаются меж­ду собой по степени использования способностей правого и лево­го полушарий, однако асимметрия в восприятии тонов, силы зву­ка, аккордов, темпа и ритма у них, похоже, значительно меньше, чем у обычных людей. Накопленный у людей искусства творчес­кий опыт усиливает структурно-функциональное сходство и вза­имодействие их полушарий.

 

 

Сбербанк VISA Яндекс Деньги QIWI WebMoney Золотая Корона Терминалы robokassa МТС Билайн Мегафон